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Molecular imaging has emerged at the end of the last century as an interdisciplinary method involving in vivo imaging and
molecular biology aiming at identifying living biological processes at a cellular andmolecular level in a noninvasive manner. It has
a profound role in determining disease changes and facilitating drug research and development, thus creating new medical
modalities to monitor human health. At present, a variety of di�erent molecular imaging techniques have their advantages,
disadvantages, and limitations. In order to overcome these shortcomings, researchers combine two or more detection techniques
to create a new imaging mode, such as multimodal molecular imaging, to obtain a better result and more information regarding
monitoring, diagnosis, and treatment. In this review, we �rst describe the classic molecular imaging technology and its key
advantages, and then, we o�er some of the latest multimodal molecular imaging modes. Finally, we summarize the great
challenges, the future development, and the great potential in this �eld.

1. Introduction

Molecular imaging has emerged at the end of the last century
and consists of a combination of in vivo imaging and
molecular biology aiming at identifying or describing living
biological process at a cellular and molecular level using
noninvasive procedures. It is especially addressed to reveal
abnormalities in cells and molecules which cause the disease,
rather than the �nal anatomical and structural abnor-
mality caused by cellular or molecular changes [1]. Various
modern imaging technologies have been widely used to
monitor structural, functional, and molecular changes in
cancer tissues, including optical imaging (either by bio-
luminescence or �uorescence) [2], computed tomography
(CT) [3], magnetic resonance imaging (MRI) [4], positron
emission tomography (PET) [5], single-photon emission
computed tomography (SPECT) [6], and ultrasound (US)
[7]. Molecular imaging can detect lesions and determine the
nature of earlier lesions more accurately compared to
conventional imaging, so that clinicians can e�ectively in-
tervene in the occurrence and formation stage of the disease
[8]. In recent years, with the appearance and development of
molecular imaging, early tumor diagnosis became possible.

Consequently, the latest advances in multimodal molecular
imaging are reviewed in this paper.

In clinical research, CT, MRI, PET, SPECT, US, and
optical imaging are usually among the choices of the imaging
modalities. Each imaging modality has its own unique
strength and intrinsic limitations, such as spatial/depth
resolution and sensitivity, making the achievement of pre-
cise and reliable information at the disease site di¡cult. In
order to compensate these weak aspects, multimodal mo-
lecular imaging has been considered in recent years [9].
Multimodal molecular imaging can play important roles in
the clinical care of various diseases by improving clinicians’
ability to perform screening, surveillance, staging, prognosis,
planning and therapy guidance, monitoring therapy e¡cacy,
and assessing recurrence. With its rapid technological ad-
vances, presymptomatic detection, targeted therapy, and
personalized medicine may be possible in the near future
through the use of multimodal molecular imaging.

2. Molecular Imaging Models

At present, molecular imaging models mainly include CT,
MRI, radionuclide, ultrasound, and optical imaging.
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2.1. CT Molecular Imaging. CT is a technique producing
images reflecting human anatomy, thanks to differential
levels of X-ray attenuation by tissues within the body. CT is
widely available, and it has some advantages such as high
spatial resolution, strong penetration depth, fast acquisition
time, low cost, clinical utility, and relative simplicity.
However, CT also has some disadvantages: one is the high
radiation dose, which often limits the scan time, and another
is the low-quality soft tissue contrast, compared with MRI
[10]. In addition, there is the low sensitivity of current CT
contrast agents. It is indeed valuable in identifying and
assessing several diseases including tumors, brain injury, and
pulmonary embolism.

+e application of CT molecular imaging requires high
quality imaging agents, after injection, in order to achieve
the target site for a change in X-ray attenuation. Currently,
most CTmolecular contrast agents are designed to combine
a maximum number of X-ray-absorbing atoms with
a nanoparticle, which includes emulsion, liposomes, lipo-
proteins, and polymeric nanoparticles [11–17].

Until now, multiple examples of the abovementioned CT
molecular imaging have started to appear, and there has
been a major development in CT molecular imaging. In
2006, Rabin et al. [18] first reported the synthesis of
a polymer-coated bismuth sulfate (Bi2 S3) nanoparticle as an
injectable CT imaging agent, which is used for enhanced in
vivo imaging of the vasculature, the liver, and lymph nodes
in normal mice. Next, Hyafil et al. [19] reported cellular
imaging using CT in atherosclerotic plaques in rabbits using
an iodinated nanoparticle dispersed with the surfactant. Li
et al. [20] reported the use of a 2-deoxy-d-glucose- (2-DG-)
labeled gold nanoparticle (AuNP-2-DG) for targeted mo-
lecular CT imaging in malignant neoplasms to obtain high-
resolution metabolic and anatomic information. Kim et al.
[21] reported the synthesis of CT-compatible gold nano-
particles optimized with prostate-specific membrane antigen
RNA aptamers and the use of CT molecular imaging and
therapy of prostate cancer. Furthermore, Kayyali et al. [22]
reported the use of targeted gold nanoparticles and lipo-
somal iodine, respectively, as contrast agents for inner ear
imaging, and the results showed that significant enhance-
ment of micro-CT images was observed using liposome
iodine. Choi et al. [23] reported the preparation of X-ray
CT/US dual-modal imaging probe (GC-DTA-PFPNPs), and
the study indicated that X-ray CT/US dual-modal imaging
could provide more comprehensive and accurate diagnostic
information about the diagnosis of tumor. Yue et al. [24]
developed a pH-responsive multifunctional nanotheranostic
agent (FePt/GOCNs) for potential in vivo and in vitro dual-
modal MRI/CT imaging and in situ cancer inhibition.

+e applied research of CT molecular imaging is be-
coming more and more widespread, and the reason is that
they have the potential for dose reduction as low as possible
while enhancing image contrast [25], display an X-ray at-
tenuation property better than commercial iodinated small-
molecular-contrast agents [26], show much stronger CT
imaging effect compared with the traditional small molecule
contrast agents [27], and have CT cell-tracking applications
for noninvasive monitoring [3, 28, 29]. In short, although

CTmolecular imaging abilities have not yet been completely
explored, it remains an extremely useful morphological tool.
When associated with other imaging modalities, CTalso can
give an anatomical reference frame for the biochemical and
physiological findings that are afforded by these other im-
aging instruments [30].

2.2.MRIMolecular Imaging. Today, MRI is seen as the most
useful imaging modality in radiology, especially in the de-
tection and characterization of soft tissue pathology [31, 32].
MRI can provide three-dimensional clear images, it has high
spatial resolution and high contrast, and the acquisition time
and the quality of images are constantly improving, thanks
to technological innovations [32]. +ese aspects are de-
scribed below by some specific MRI methods.

From a great many studies, including work in packed
cells, it is easy to see that cell density varying inversely is
reflected in conventional measurements of diffusion using
MRI report values of ADC. Consequently, DWI has been used
to evaluate tumor cellularity [33, 34]. A quantitative map that
acquired tumor cellularity in vivo may be a useful tool for
both treatment planning and monitoring. Early studies
revealed abnormal water diffusion in various tumors, and
more detailed quantitative relationships have always been
explored recently between microstructure and ADC. Zhao
et al. [35] discovered the ADC changes in response to tumor
treatment by measuring water ADC in excised RIF-1 tumors
after treatment with an anticancer drug. +ese data indicated
that ADC increase began while the tumors were still growing
and implied that it could be an early indicator of valuable
cytotoxic treatment response. Hereafter, Henning et al. [36]
reported the value of ADC for quantitative assessments of
individual tissue regions, tumor growth kinetics, and cell kill
in RIF-1 tumor animal models. Moreover, in the related
studies, higher pretreatment ADC values incline to correlate
with poorer response to therapy and prognosis [37–39]. For
example, one of these studies shows that, on performing DWI
in hepatic metastases, it appears that ADC values are effective
on predicting and monitoring the early chemotherapeutic
response of these metastases which originated from gastro-
intestinal tumors [39]. In these patients, the pretherapy mean
ADC value in nonresponding lesions is significantly higher
than that in responding lesions. Similarly, Koh et al. [38]
found that higher pretreatment ADC values were predictive of
poor response to chemotherapy in a small group of patients
with colorectal hepatic metastases.

+e examples above demonstrate the usefulness of in-
direct approaches to measure molecular changes in tissues,
but many other researchers preferred the approach of a di-
rect molecular imaging using MRI. At present, there are two
major types of MRI molecular imaging probes: one is the
direct detection of a nuclear species, that is, a component of
an imaging probe (e.g., nuclei detection with the use of 31P,
23Na, 19F, 1H, or 13C within molecules introduced into the
body), which is realized by magnetic resonance imaging
(MRS), and the other approach consists of an indirect de-
tection via the effects of an agent on the large signal orig-
inated from the hydrogen nuclei (protons) in tissue water,
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either by changing the water relaxation rate or by in-
troducing new pathways for magnetization transfer [40].

For the first of direct approaches, MRS has been widely
used to detect metabolic changes in cancerous as well as in
normal tissues. MRS can not only provide information on
biochemical changes in response to tumor growth but also
delineate different metabolic tumor phenotypes. For in-
stance, 1HMRS is widely used to monitor metabolic changes
in cancer tissue [41–47], and the other active nuclei such as
31P (phosphorus) [48, 49], 23Na (sodium) [50], 13C (carbon)
[51–53], and 19F (fluorine) [54, 55] are also being used to
monitor bioenergetics and metabolic in cancer.

For the second of direct approaches, MRI implies the use
of paramagnetic or superparamagnetic agents that alter the
tissue proton relaxation time T1, T2, or T2∗ or manipulate
the magnitude of the water signal via specially designed
radiofrequency irradiation that labels one species of protons
that in turn transfers the label to the water via magnetization
exchange [56]. For example, Ta et al. [57] reported the
development of functional multimodal iron oxide nano-
particles for targeted MRI in atherosclerosis, which uses
a combination of chemical and biological conjugation
techniques. +e ultrasmall magnetic dual-contrast iron
oxide nanoparticles are used to be efficient positive and
negative dual-contrast agents for magnetic resonance im-
aging and are also labeled with fluorescent molecules to
allow for optical imaging.

So far, the design of MR contrast agents may be divided
into four different types for different applications.+e first is
represented by nonspecific contrast agents. For example, the
commonly used lanthanide chelates or intravascular blood
pool agents [58] are both missing the ability to reach specific
targets. Low-molecular-weight Gd(III) complexes have be-
come an essential tool in the detection and characterization
of many diseases [59]. +e second is represented by targeted
contrast agents. +ey are usually paramagnetic species glued
to or part of specifically molecules, such as antibodies that
are directed toward and taken up by specific molecular
targets [60–62].+e third is represented by so-called “smart”
contrast agents. Although they do not rely on selective
targeting to achieve spatial specificity, they change their
efficacy only in response to specific local molecular char-
acteristics, such as the presence of specific proteinases, or
changes in environmental pH [63–67]. +e fourth is rep-
resented by labeled cells.+ey can be bound to or introduced
into specific cell types such as T cells or stem cells, which
then rely on the trafficking and recognition of the cells for
their localization [68–71].

+e above four types of MR contrast agents can be all
used in different aspects of MRI molecular imaging. Fur-
thermore, Ko et al. and Yang et al. [72, 73] reported the
construction of PET/MRI dual-mode probe, which can
perform PET and MRI imaging at the same time of the
tumor. Kircher et al. [74] further developed a new triple-
modality MRI-photoacoustic-Raman nanoparticle (MPR
nanoparticle) to perform multimodal molecular imaging,
and the three-mode molecular probe can obtain more ac-
curate brain tumor resection by exploiting the comple-
mentary strengths of each modality.

Overall, magnetic resonance imaging is one of the most
important molecular imaging researchmethods, which can be
used for noninvasive monitoring and early diagnosis of
diseases at the cellular andmolecular level. In recent years, the
study of magnetic resonance molecular imaging is increasing
and is mainly used for cell tracking, angiogenesis, apoptosis,
and in vivo tissue gene imaging. Although the techniques still
have some problems that need an urgent solution, its unique
advantages make its application prospect worthy of expec-
tation in clinical medicine and basic research.

2.3. Radionuclide Molecular Imaging. Radionuclide imaging
is one of the four major medical imaging techniques, and it is
a radioactive marker in drug, when the body organs and tissue
absorb and form radiation source in the body, and then, the
nuclide detection device can be used to detect isotope in the
process of decay on the rays, which constitute the image of
radioactive isotopes in in vivo distribution density [75, 76].
In recent years, with the rapid development of molecular
biology and nuclear medicine technology, the field of
nuclear medicine has formed a new branch of nuclear
medicine—molecular nuclear medicine [77]. SPECT and
PETare advanced radionuclide molecular imaging techniques
that are able to evaluate biochemical changes and levels of
molecular targets within a living subject. Both techniques
enable whole body imaging of molecular targets/processes
with high sensitivity. SPECT is mainly used for whole body
bone imaging [78–80], myocardial blood flow imaging
[81–84], cerebral blood flow imaging [85–89], and thyroid
imaging [90–95]. PET is mainly used to detect dynamic
changes in the metabolic function of substances (or drugs) in
the human body, and it widely used for the nervous system,
the cardiovascular system, and the oncology [96–101].

+e imaging agents used for PET are the basic elements
for the human body, used to easily mark compounds and
metabolites, and do not change their biological activity, so as
to reflect the molecular level of physiological and bio-
chemical processes of the human body, to achieve the
purpose of early diagnosis and guidance of treatment. In
clinical practice, PET that enables to locate, stage, and
monitor cancer is mainly used to image tumors through the
use of the 18F-labeled imaging agent [18F]-2-fluoro-
2-deoxy-glucose ([18F]-FDG) [102–104]. For instance,
Brenner et al. [105] reported that the predictive values of
[18F]-FDG in primary staging in patients with newly di-
agnosed nonseminomatous germ cell tumor (NSGCT)
clinical stage I/II. Kindred et al. [106] investigated glucose
uptake asymmetries in leg muscles of patients with mild
multiple sclerosis (MS) during walking with a glucose tracer
(18F-FDG),and the result showed that [18F]-FDG uptake
was significantly lower in the weaker knee flexors of patients
with MS. Winther-Larsen et al. [107] evaluated whether
changes in [18F]-FDG uptake evaluated early during erlo-
tinib treatment predict survival in nonsmall-cell lung cancer
(NSCLC) patients.

In addition to its clinical practicality, PET has extensive
applications in the basic and preclinical researches. PET can
be used to study basic physiological and molecular
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mechanisms of human diseases by using the appropriate
radiolabeled-imaging agents [108]. Bretin et al. [109] re-
ported that the biodistribution of the PET tracer over time
can be determined in vivo. Moreover, PET can be employed
for the evaluation of novel radiolabeled-PET imaging agents,
biodistribution of novel pharmaceuticals in suitable animal
models, and effectiveness of new therapies [30, 110]. For
instance, Nanni et al. [111] studied small animal PET for the
early detection of malignant masses in a xenograft murine
model of human rhabdomyosarcoma and analyzed the
metabolic behavior of this xenograft tumor over time.

SPECT imaging agents use energy between 85 and
500Kev; radiographic tomography is a technique for pro-
jection reconstruction of faulty images, which are similar to
X-ray and CT imaging. SPECT uses nuclides such as 99mTc
[112–114], and 123I [115, 116] through the emission of single
gamma rays decay to obtain different energies. SPECT is one
of the most commonly used nuclear medicine modalities in
clinical practice [117]. Some examples of clinical use are the
potential usefulness of 99mTc-TRODAT-1 imaging in the
evaluation of patients with early-stage Parkinson’s disease
[118], the therapeutic effects of 111In-DTPA-octreotide in
tumors of various sizes [119], and the location and excision
of the tumor [120]. Besides, small-animal SPECT is designed
for imaging small animals specifically [121, 122], and it has
been used for many preclinical studies. To name a few,Wang
et al. [123] studied that the dynamics and feasibility of
imaging nonsmall-cell lung cancer (NSCLC) apoptosis in-
duced by paclitaxel treatment using 99mTc-labeled C2A
domain of synaptotagmin I in a mouse model. Moscaroli
et al. [124] presented an 111In-radiolabeled FGF-2 derivative
for noninvasive imaging in small animals deploying single-
photon emission tomography (SPECT). Tang et al. [125]
developed a radiolabeled tyrosine kinase inhibitor (TKI) for
HER2-targeted breast cancer imaging.

Since biochemical changes always occur before ana-
tomical changes in disease, both PET and SPECT have clear
diagnostic strength over anatomical techniques such as
classical CT and MRI. However, PET and SPECT have a key
weakness, that is, the lack of an anatomical reference frame.
+is weakness may be eliminated through the combination
of these instruments with either CT or MRI, producing
a single scanner capable of accurately identifying molecular
events with precise correlation to anatomical findings [126].
+is method is known as “multimodality imaging,” in which
two or more modalities are used in combination to develop
their individual strengths and compensate for the weak-
nesses of each imaging system. For example, Glaus et al.
[127] developed a novel nanoparticle-based dual-modality
positron emission tomography/magnetic resonance imaging
(PET/MRI) contrast agent; the probe produced strong MR
and PETsignals and were stabled in mouse serum for 24 h at
37°C. Chen et al. [128] synthetized folate-NOTA-Al18F ra-
diotracer and examined its properties both in vitro and in
vivo, for PET imaging of folate receptor-positive tumors.
Xing et al. [129] built a dual-mode probe which uses RGD as
a target probe and quantum point as the carrier. +en, this
dual-mode probe is covered with PEG to improve water
solubility and is linked to DOTA which chelates 64Cu. +us,

the nuclear medical imaging is associated with near-infrared
imaging. Finally, the authors show that the PET signal is
highly coincided with quantum dot near-infrared image.

So far, nuclear medicine molecular imaging technology
is one of the widely used technologies in clinical molecular
imaging technology and plays an important role in the study
of personalized medical care due to its unique technology
[130–133]. PET and SPECT are not only powerful tools for
basic medicine and pharmacy but also the best tools for
detecting and guiding the treatment of various diseases and
tumors [110, 134, 135]. +ey contribute to developing
treatment programs on the tumor and other diseases, which
are made by clinicians more scientific, more comprehensive,
and more reasonable. +eir application will have a profound
impact on clinical practice.

2.4. Ultrasound Molecular Imaging. Ultrasound imaging,
like MRI and CT, has been used as a morphological imaging
modality. Medical ultrasound imaging is a unique imag-
ing modality that exploits the properties and behavior of
high-frequency sound waves as they travel through bi-
ological tissue, and it can be used both for diagnostic im-
aging and as a therapeutic tool. Compared with traditional
imaging techniques such as radionuclide imaging and op-
tical imaging, ultrasound imaging has some advantages such
as economy, convenience, and real-time imaging [136, 137].
Furthermore, ultrasound molecular imaging of contrast
agents which combine with the target organ can be used as
a carrier for therapeutic drugs or genes, so as to achieve
a multiplier effect [138–140].

Traditional ultrasound contrast agents, that are a few
micrometers in diameter and in the terms of gas-filled
microbubbles, are often coated with lipids or bio-
polymers, and they are available for enhancing the reflection
signal-to-noise ratio for blood [141]. +ese contrast agents
have provided useful imaging data, but they do not enable
imaging of specific molecular events. However, by attaching
certain antibodies [142–144], peptides [145, 146], or other
targeting moieties [147] to the surface of microbubbles,
those particles can target specific biochemical processes to
achieve ultrasound molecular imaging. Ultrasound molec-
ular imaging that uses in vivo simulation of immunohis-
tochemistry or in situ hybridization techniques targets
biomolecules to highlight the pathological changes of dis-
eased tissue. +us, it can visualize the real pathogenesis and
significantly improve the sensitivity and accuracy of imaging
diagnosis. +ese aspects are actually the current clinical
research central issues.

At present, targeted microbubbles are being used in
preclinical investigations of both inflammation and angio-
genesis. For example, microbubble shells have been attached
to endothelial cell adhesion molecules for visualization of
P-selectin, supplying foresight on molecular aspects of in-
flammation [148]. Deshpande et al. [149] showed that
P-selectin-targeted microbubbles (MBs) can be used to
monitor the expression of this molecule as a marker of
inflammation in a murine model of inflammatory bowel
disease (IBD). In order to target vascular endothelial growth
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factor receptor-2 (VEGFR2), Willmann et al. [150] con-
structed anti-VEGFR2 antibodies attached to microbubbles.
After using either targeted microbubbles or control
microbubbles in tumor-bearing nude mice, ultrasound
imaging studies can be performed. Compared with studies
using only control microbubbles, imaging results demon-
strated a significantly higher average intensity in images
from studies using targeted microbubbles. Liu et al. [145]
developed endothelial-targeted microbubbles (MBs) and
employed targeted microbubble-enhanced ultrasound (US)
imaging to assess the endothelial expression levels in neo-
vasculature for noninvasive assessment of colorectal tumor
angiogenesis.

With the emergence of ultrasound molecular imaging,
the early diagnosis and specific treatment of malignant
tumors gained some research achievements. Kim et al. [151]
used ink-containing PLGA polymermicrobubbles to achieve
both enhanced optical and ultrasound imaging of breast
cancer with a depth of less than 18mm. Cochran et al. [152]
study showed that injecting paclitaxel microbubbles can
effectively avoid acute poisoning reaction caused by direct
injection of paclitaxel, thus significantly reducing paclitaxel
side effects and effectively inhibiting tumor growth. Wang
et al. [153] reported that integrin-targeted nanoparticle gene
vector can specifically act on vascular endothelial cells of
mice tumors, thus inducing tumor regression. Liu et al. [154]
prepared perfluoropentane nanodroplets modified by folate
and encapsulated by lipid membrane (FA-NDs) and in-
vestigated the nanodroplets stability in different temperature
and its target performance of SKOV3 tumor cells in vitro
and in vivo. Hu et al. [155] verified that tumor over ex-
pression of SHP2 and other protein tyrosine phosphatases
regulated several cellular processes and contributed to tu-
morigenesis, which could be introduced to ultrasound
molecular imaging for differentiating normal from malig-
nant thyroid diagnostic nodes.

In the near future, ultrasound molecular imaging is
expected to pass from a preclinical modality to a fully
clinically useful technique through the use of different
clinically translatable instrumentation, such as endoscopes
and novel US-compatible imaging agents that are able to
exudate [156, 157]. Among the agent-based molecular im-
aging techniques, targeted ultrasound imaging has prom-
ising huge developments.

2.5. OpticalMolecular Imaging. Optical imaging is a method
of obtaining biological information by using optical de-
tection means combined with optical detection molecules to
imaging cells or tissues or even organisms. If the biological
optical imaging is limited to the visible and near-infrared
range, different biological optical imaging methods can be
divided into fluorescence imaging, bioluminescence imag-
ing, photoacoustic imaging, and optical tomography.
Nowadays, molecular imaging becomes more popular and is
combined with classical optical imaging techniques.

Fluorescence imaging technology is marked with
a fluorescent report group including inorganic materials,
such as upconversion, quantum dots, and other organic

materials, such as green fluorescent protein, red fluorescent
protein, or fluorescent dye. It uses excitation light to make
the report group reach a higher level of molecular level and
then emit a longer wavelength visible light to form biological
light source in vivo and detect it. At present, common
fluorescent groups include various small molecule fluores-
cent dyes, green fluorescent protein, and red fluorescent
protein. In recent years, fluorescence technology has been
extensively used in the study of molecular biology and the
metabolism of small molecules in small molecules. +ere is
a rapidly expanding list of fluorescent agents which includes
near-IR Cy 5.5, turnip green, quantum dots (QDots), the
Alexa dye series, and all kinds of fluorescent proteins. Be-
sides, lanthanide-based imaging agents were added to this
list [158]. +ere are numerous strengths of these agents
which are better than the aforementioned dyes and proteins.
+ey have narrow, nonoverlapping emission bands, long
luminescence lifetimes, and allow multiplexed quantitative
measurements of the intracellular analysis concentrations
[158, 159]. Fluorescence molecular tomography (FMT) has
been applied to visualize and quantitate a variety of cellular
and molecular events. In opposition to planar fluorescence
imaging, FMT can produce quantitative information and
allows imaging at greater depths, up to several centimeters
[10]. In 2009, Hyde et al. [160] first used FMT/CTdual-mode
imaging to observe the distribution of the focal region of the
brain in the mouse model of Alzheimer’s mice. Lin et al.
[161] developed a FMT/MRI fusion imaging system for small
animal imaging, which verified the accuracy of FMTimaging
provided by the anatomical structure provided by MRI.

Bioluminescence imaging technology uses luciferase
gene to label cells or DNA and exploits sensitive optical
detection instrument to directly monitor cell activity and
gene behavior in living subjects. +is technique has these
following advantages: (1) noninvasive, (2) continuous re-
peated detection, (3) fast real-time scanning imaging, and
(4) high sensitivity. Bioluminescence imaging has been used
to study numerous enigmatic protein-protein interactions.
One such study uses a firefly luciferase-based protein
fragment complementation assay to visualize luciferase-
expressing bone marrow cells in brain inflammation in
living mice [162]. In 2006, Wang et al. [163] built a separate
BLT/CT dual-mode imaging system, BLT data acquisition
system to the mice in the imaging process, and then saved
the mouse position and posture, and the acquisition of CT
data, finally anatomical information obtained from CT into
BLT reconstruction, so as to improve the accuracy of BLT
imaging.

Photoacoustic imaging (PA) by using optical absorption
and transformation between the tissues of the light and
sound energy is a nondestructive imaging method developed
in recent years. It combines the high penetration charac-
teristics of pure optical imaging and high contrast charac-
teristics by light into the ultrasound, and it can provide tissue
imaging with high resolution and high contrast. Based on the
technology of photoacoustic effect of time-domain photo-
acoustic spectrum, it partially overcomes the effect of strong
scattering in the optical transmission in the organization
when optical and acoustic are organically combined.
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+erefore, photoacoustic technology has well biological
penetration, the characteristics of high resolution, and no
side effects. Its main application direction can effectively
carry out biological tissue structure and function imaging,
providing an important means for studying the morpho-
logical structure, physiological characteristics, pathological
characteristics, and metabolic function of biological tissue.
For example, Ding et al. [164] developed a novel contrast
agent where the surface of superparamagnetic iron oxide
(SPIO) nanoparticles is functionalized with a bladder
cancer-specific fluorescein isothiocyanate- (FITC-) labeled
cell penetrating peptide- (CPP-) polyarginine peptides (R11)
for active targeting and imaging. +e results indicate great
potential of SPIO-R11 as a contrast agent to target bladder
cancer for diagnostic and therapeutic applications.

At present, there are still some defects in the living
organism imaging system. Many in vivo optical imaging are
also just stay in the phantom and small animal experimental
stage, has not yet entered into clinical application, and need
a further improvement in many aspects. It is an important
task for the future to find new high quantum efficiency
fluorophores, improve the reconstruction algorithm and
image resolution, and expand the new optical imaging
technology. In vivo bioluminescent imaging technology has
become an indispensable tool in the research of nuclear
small-animal models. It studies the pathological process,
drug development, and drug efficacy from a unique per-
spective. In fact, the biological optical imaging technology
has had a significant impact on the basic and applied medical
research.

3. Application of Multimodal
Molecular Imaging

Multimodal molecular imaging combines two kinds or more
detection technologies to form a new way of imaging, which
is convenient for obtaining some further information in
diagnosis, treatment, and monitoring. At present, multi-
modal molecular imaging has been widely used to optimize
medical research and clinical practice. In practice, multi-
modal molecular imaging has been helpful for cardiovas-
cular diseases [165, 166], neuropsychiatric diseases
[167–170], and other clinical diseases [168, 171–175]. In
addition, it can significantly enhance the positioning of the
tumor border and effectively guide the surgical resection of
the tumor [74, 176, 177].

A few specific examples are as follows: (1) cardiovascular
diseases: Yoo [178] presented multimodal intravascular
optical imaging combining optical coherence tomography
and fluorescence lifetime imaging. It can provide new op-
portunities to investigate vascular pathobiology and di-
agnose cardiovascular disease, by simultaneously visualizing
plaque morphology and biochemical composition; (2)
neuropsychiatric diseases: Voss et al. [179] used multimodal
functional-imaging technology to study a patient with
marked neurological recovery after cranioplasty, and the
results suggested resting-state networks and auditory re-
sponses obtained with functional MRI and cerebral meta-
bolism obtained with PET before and after cranioplasty

revealed significant functional changes that were correlated
with the subject’s neurological recovery. Wang [180] studied
the multimodal imaging investigation of brain mechanisms
in neuropsychiatric disorders, emphasizing on the research
questions of whether and how neurochemistry is associated
with brain anatomical structures and brain functions; and
(3) other clinical diseases: Tang et al. [175] developed a novel
multimodal video endoscope and evaluated its usefulness for
the early detection of gastric neoplastic lesions; the imaging
platform is a modified upper GI endoscope capable of white-
light imaging (WLI), wide field vital-dye fluorescence im-
aging (VFI), and high-resolution microendoscopy (HRME)
in a single endoscopic insertion.

In summary, multimodal molecular imaging has a bright
future. +e development of this field will bring a major
breakthrough in medical imaging and molecular biology.
Although molecular imaging remains at its initial stage,
a broader space for further developments is still possible.
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