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Primary hyperparathyroidism is the third most common
endocrine disorder after diabetes mellitus and hypothyroid-
ism, and affects an estimated 0.3% of the general population
[1,2]. Approximately 90% of such patients are subsequently
found to have a single parathyroid adenoma, 10% are found
to have multigland hyperplasia or multiple adenomas, and
the rare patient is found to have parathyroid carcinoma [3].

Surgical removal of the hyperfunctioning parathyroid
tissue is the only definitive cure and is warranted in symp-
tomatic patients or in those who develop complications, as
well as in all patients under 50 years of age [4]. Traditionally,
this was done by way of a bilateral neck exploration with
direct visualization of all 4 glands, with preoperative imag-
ing studies rarely required. In 1986, interventional radiolo-
gist John L. Doppman remarked that ‘‘the only localising
study indicated in untreated primary hyperparathyroidism is
to localise an experienced parathyroid surgeon’’ [5].

Over the last 30 years improvements in imaging techniques
have enabled radiologists to identify parathyroid adenomas
with greater confidence and accuracy, allowing surgeons to
perform unilateral or targeted parathyroidectomies. More
recently, concerns regarding higher rates of recurrent or
persistent disease have prompted some surgeons to abandon
unilateral parathyroidectomy and return to the traditional
bilateral neck exploration [6].

Nonetheless, targeted parathyroidectomy remains the
preferred operative technique for many surgeons and is
associated with a shorter operative duration, a lower risk of
postoperative complications and greater patient satisfaction
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[7,8]. This approach is dependent on precise localization of
the abnormal gland(s) and is therefore predicated on accurate
preoperative imaging.

In approximately 16% of cases of primary hyperpara-
thyroidism, 1 or more hyperfunctioning gland(s) is found in
an ectopic location [9]. The location of ectopic glands de-
pends on their embryological origin. The superior glands,
which are derived from the fourth branchial pouch, can oc-
casionally be found within the thyroid gland, as the paraf-
ollicular cells of the thyroid also derive from the fourth
branchial pouch. The inferior glands, which are derived from
the third branchial pouch, descend with the thymus and un-
dergo a much lengthier migration compared to the superior
glands. Hence, they experience more variation in their final
location. It is useful to note that this descent occurs in a
narrow coronal plane anterior to the recurrent laryngeal
nerves and extending from the angle of the mandible to the
pericardium, explaining why they can occasionally be found
in the thyrothymic tract or the superior mediastinum.

Ultrasonography (US) and 99mTc sestamibi scintigraphy
(MIBI) are widely used first-line investigations and are
commonly used in combination. If both tests are in agreement,
the patient is considered a candidate for a targeted para-
thyroidectomy. However, parathyroid lesions can prove elusive
and first-line imaging studies are often indeterminate, partic-
ularly if the lesion is small, has an unusual anatomic location,
or if there is coexistent thyroid disease. Furthermore, both US
and planar MIBI experience a significant reduction in sensi-
tivity in cases of multigland disease [10,11]. Dynamic,
contrast-enhanced computed tomography (CT) has emerged as
a popular second-line investigation in ambiguous or problem-
atic cases. Recent advances in magnetic resonance imaging
(MRI) and development of several novel positron emission
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tomography (PET) radiotracers have shown promise in early
studies and may lead to an expanded role for these modalities.
Ultrasound

Parathyroid US was first described in 1975 and has since
become widely used in the preoperative localization of
abnormal parathyroid glands [12]. Parathyroid imaging is an
excellent application of US as the superficial location permits
the use of high-frequency transducers, usually 5-15 MHz,
with their increased spatial resolution.

Parathyroid adenomas tend to be homogenous, round to
ovoid in shape, and appear hypoechoic compared with thy-
roid tissue. The application of Doppler can assist in dis-
tinguishing parathyroid lesions from other surrounding
structures. A typical adenoma has a peripheral rim of
vascularity and asymmetrically increased blood flow
compared with the adjacent thyroid tissue. Furthermore, the
identification of a prominent extrathyroidal feeding artery
entering at 1 pole, known as polar artery, can further help in
discriminating between an adenoma and a cervical lymph
node, which usually has a hilar blood supply (Figure 1) [13].
Positioning the transducer in the transverse plane and
rotating the patient’s head to the opposite side can often aid
in detecting an inconspicuous gland.

US is inexpensive and widely available, and has sufficient
sensitivity to permit its use as a first-line investigation. It also
allows for the concurrent assessment of the thyroid and fa-
cilitates percutaneous biopsy if necessary. Due to its wide-
spread availability and regular advances in technology over
the last 20 years, US has been extensively evaluated. In 2012
Cheung et al [14] carried out a meta-analysis of preoperative
imaging in primary hyperparathyroidism and found US to
have an overall pooled sensitivity of 76.1% and positive
predictive value (PPV) of 93.2%. More recently, Smith et al
[15] examined the performance of US in 220 patients with
primary hyperparathyroidism and noted that the localization
by US was accurate in 82% of cases.

Both multigland disease and multinodular thyroid disease
can impact on the performance of ultrasound. A 2005
Figure 1. Neck ultrasound shows a 1.6 � 2.0 cm hypoechoic, homogenous

nodule with a polar feeding vessel (arrow) located posterior to the lower pole

of the left lobe of the thyroid, consistent with a parathyroid adenoma.
systematic review of 20,225 cases of primary hyperpara-
thyroidism found that the sensitivity of ultrasound dropped
from 78.5% to 34.9% in cases of multigland hyperplasia, and
fell further to 16.2% where double adenomata were con-
cerned [3]. A further 2006 study of 123 patients with primary
hyperparathyroidism reported a reduction in sensitivity of
high frequency ultrasound from 89% to 84% in cases of
concomitant thyroid nodules [16].

As with any application of US, it can be limited in pa-
tients with an elevated body mass index and is highly
dependent on an experienced sonographer performing the
study. Visualization of low inferior glands can be particularly
difficult in patients who are unable to adequately extend their
neck. In addition, US has poor penetration of air filled or
bony structures, limiting its ability to detect ectopic glands,
particularly those located in the mediastinum. For these
reasons, US is usually employed in conjunction with another
imaging modality, most commonly 99mTc MIBI.

99mTc SestaMIBI Scintigraphy

Radioisotope scintigraphy of the parathyroid glands was
described in 1983 with thallium as the initial radionuclide of
choice [17]. 99mTc MIBI was later introduced in 1989 and
greatly increased the sensitivity of nuclear imaging [18].
MIBI is a lipophilic cation that accumulates in the mito-
chondria rich oxyphil cells of abnormal parathyroid tissue.
There are several protocols in use for parathyroid scintig-
raphy, most of which are based on 2 techniques: single-tracer
double phase and dual-tracer single phase.

In the single-tracer double-phase technique 99mTc MIBI is
administered and a first set of images acquired after 10-
15 minutes. A second acquisition is then taken 1.5-3 hours
later. The radiotracer washes out more rapidly from the
surrounding tissues than from the parathyroids, allowing for
the identification of abnormal gland(s) on interval imaging
(Figure 2). In the dual-tracer single-phase technique, also
known as subtraction scintigraphy, a second radiotracer
(usually 123I or 99mTcO4

e) is administered and is then taken
up more avidly by the thyroid. This thyroid scintigram can
then be digitally subtracted from or can be viewed alongside
the 99mTc MIBI images, allowing the viewer to distinguish
abnormal parathyroid glands from thyroid tissue.

MIBI’s wide field of view enables detection of ectopic
lesions, particularly those in the mediastinum. In addition,
there is less interobserver variation compared with neck US.
Pitfalls in MIBI imaging however include the potential for
both false positives and false negative studies. Thyroid
nodules, thyroiditis, and enlarged cervical lymph nodes can
all delay the washout of the radionuclide giving the
appearance of a parathyroid adenoma. In particular, follicular
and Hurthle cell neoplasms readily accumulate MIBI and can
often lend themselves to such errors [19]. The sensitivity of
planar MIBI in the detection on parathyroid adenomas varies
widely but is usually reported in the region of 70%-85%,
with dual-tracer protocols performing slightly better than
single-tracer techniques [20e22].



Figure 2. 99mTc sestamibi scintigraphy in a 49-year-old man with primary hyperparathyroidism and multiple endocrine neoplasia type 1. (A) Planar imaging

demonstrates a focus of tracer retention in the left lower neck. (B) Single-photon emission computed tomography/computed tomography confirms a focus of

intense tracer retention correlating with a 9 mm nodule located posterior and inferior to the left lobe of the thyroid, consistent with a parathyroid adenoma.
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The use of single-photon emission computed tomography
(SPECT) has the advantage of 3 dimensions, aiding in the
identification of pathological tissue within deep body struc-
tures or behind the thyroid where it may be obscured
on planar imaging. Several studies have demonstrated an
improved sensitivity and accuracy of SPECT compared to
planar imaging, with a sensitivity of approximately 85%
[23e25]. More recently, SPECT has been fused with con-
ventional, x-rayebased CT (Figure 3). These hybrid SPECT/
CT images not only provide additional anatomic information
of use to the surgeon, but are also more sensitive and accurate
[26e29]. A 2015 meta-analysis comparing SPECT/CT,
SPECT, and planar imaging concluded that SPECT/CT was
superior to SPECTwith an overall pooled sensitivity and PPV
of 84% and 95%, respectively, compared with 66% and 82%
for SPECT [30]. More recently, Treglia et al [31] pooled data
from 1,236 patients and reported a detection rate for SPECT/
CT of 88% for both a per-patient and a per-lesion analysis.

One of the most notable advantages of MIBI over US is its
ability to detect ectopic lesions. In 1 study of 202 patients with
ectopicparathyroid lesions, planarMIBIhada sensitivityof89%,
performing particularly well in cases of thymic, mediastinal, and
retroesophageal adenomas [32]. In contrast, US had a sensitivity
of only 59% for detecting ectopic glands; and although it
performed well in cases of undescended and intrathyroidal
glands, it was particularly poor at detecting glands within the
thymus or in the retroesophageal areas, and failed to detect any
glands located within the mediastinum or carotid sheath. In a
further study of 88 patients, Koberstein et al [29] found that
SPECT/CTwas an accurate and reliablemeans of localizing both
retrothyroid and ectopic adenomas with a sensitivity and speci-
ficity of 81.5% and 100%, respectively, for ectopic lesions.



Figure 3. 99mTc sestamibi scintigraphy in a 52-year-old man with primary hyperparathyroidism. (A) Planar imaging shows diffuse tracer uptake within both

lobes of the thyroid but no focus of tracer retention suggestive of parathyroid adenoma. (B) Single-photon emission computed tomography/computed to-

mography reveals a 1 cm soft tissue nodule (white arrow) immediately lateral to the esophagus and posterior to the left lower pole of the thyroid. The nodule

shows low-grade tracer uptake illustrating the improved sensitivity of Single-photon emission computed tomography/computed tomography over planar

imaging. A parathyroid adenoma was removed at surgery.

4 S. Liddy et al. / Canadian Association of Radiologists Journal xx (2016) 1e9
Ultrasound or Scintigraphy?

US and MIBI are the 2 most commonly employed first-line
investigations, with many institutions using the 2 in combi-
nation. Other authors have compared the performance of US
with planar MIBI and SPECT and have largely concluded that
they are of similar efficacy in the detection of parathyroid
adenomas [14,33]. A 2009 review found level III evidence in
support of using either US or MIBI as the initial investigation
[33]. However, most of the studies included in that review
evaluated planar scintigraphy, whereas SPECT/CT has become
more widely used in recent years. A direct comparison be-
tween US and tomographic scintigraphy is made difficult by
the myriad techniques and protocols in current use.
Guerin et al [34] compared US with dual-tracer SPECT
among 127 patients and concluded that SPECT was more
sensitive (93%) and more accurate (83%) than US in cases of
uniglandular disease. Kluijfhout et al [35] examined US,
SPECT/CT and PET in 63 patients and found a higher
sensitivity (80%) and PPV (93%) with SPECT/CT compared
with US and suggested that SPECT/CT should be performed
first, with US reserved for confirming positive SPECT/CT
findings and preoperative marking. Berner et al [36] compared
dual-tracer SPECT/CT with US and found that SPECT/CT
had a superior sensitivity (71% vs 60%) and specificity (94%
vs 72%). In particular, SPECT/CT outperformed US in cases
of multigland disease and nodular thyroid disease with
sensitivity of 64% and 84%, respectively, compared with 36%



5Imaging in primary hyperparathyroidism / Canadian Association of Radiologists Journal xx (2016) 1e9
and 68% for US [36]. It should be noted that the overall
sensitivity reported in this series of 71% for SPECT/CT is
lower than has been reported in meta-analysis, likely due to
the low rate of 20 mAs. In contrast, Butt et al [37] described
their experience of using US alone and noted that is correctly
identified the parathyroid adenoma in 98% of cases suitable
for targeted parathyroidectomy.

There are a large number of published series, many of
which summarize their results with differing conclusions and
opposing recommendations. However, the overriding
impression is that SPECT/CT has a higher sensitivity and
specificity compared to US, and is far superior in cases of
ectopic and multigland disease.

Computed Tomography

Historically, conventional CT has performed poorly in
comparison with other imaging modalities in imaging para-
thyroid adenomas, with a sensitivity of approximately
40%-70% [38,39]. The advent of high-resolution CT and
progressively thinner sections allowed radiologists to inter-
pret images with greater confidence than before. However, it
still failed to adequately distinguish between parathyroid
adenomas and cervical lymph nodes, which can closely
resemble adenomas in size and shape. Dynamic, contrast-
enhanced CT, also referred to as 4-dimensional CT, was
first described in 2006 and aims to address this problem by
incorporating 2 contrast-enhanced phases in addition to the
standard, non contrast phase (Figure 4) [40]. The typical
parathyroid adenoma is of low attenuation on the noncontrast
phase, demonstrates peak enhancement on the arterial phase,
followed by a washout of contrast on the delayed phase
images [41,42]. Lymph nodes, however, will continue to
demonstrate progressive enhancement for approximately
90 seconds, corresponding to the delayed phase.

Similar to SPECT/CT, dynamic CT provides excellent
anatomic detail for adenoma localization while also detect-
ing ectopic lesions. In addition, it appears to be of superior
Figure 4. Dynamic computed tomography in a 68-year-old female with primar

imaging features of a parathyroid adenoma (arrow). Coronal noncontrast imagi

thyroid. This lesion enhances avidly on arterial phase imaging (B) and demonst
sensitivity to planar scintigraphy and ultrasound. Rodgers
evaluated dynamic CT as an initial investigation in 75 pa-
tients with primary hyperparathyroidism and recorded an
improved sensitivity (85%) compared with both SPECT/CT
(65%) and US (57%) when localizing the lesion to 1 side of
the neck [40]. Starker et al [43] also examined dynamic CT
as an initial localising study and found that dynamic CT
localized the lesion to the correct quadrant in 86% of cases
compared with 40% for SPECT and 48% for US. Brown et al
[44] looked at dynamic CT in 100 consecutive cases and
reported an overall sensitivity of 92% compared with 70%
for SPECT/CT.

The primary concern with dynamic CT is the high dose of
radiation, ranging between 10 and 27 mSv [43,45]. Many in-
stitutions have now adapted the originally described protocol
by either omitting the initial, noncontrast phase or by removing
1 of the subsequent, contrast-enhanced phases. However the
radiation dose still remains high. Mahajan et al [46] analysed
the radiation dose of dynamic CT and SPECT and calculated
that the patient effective doses were similar (10.4 vs 7.8 mSv)
but that the dose to the thyroid was 57 times higher for dy-
namic CT. In a prototypic 20-year-old woman this translates
into a lifetime risk of thyroid cancer of approximately 0.1%.
More recently, a 2-phase, low-dose protocol with a similar
radiation dose to SPECT/CT has been described and appears to
have a similar sensitivity to standard protocols [47]. None-
theless, concerns about the radiation dose persist, leading many
centres to reserve dynamic CT for use as a confirmatory study
or as a second-line study in problematic cases.

MRI

Although less commonly used than ultrasound or scin-
tigraphy, MRI is generally considered to have a similar ac-
curacy to other modalities in the detection of parathyroid
lesions with a reported sensitivity of 63%-91% [48e53].
Similar to dynamic CT, MRI is predominantly used as a
second-line investigation. In 1 study of 44 patients with
y hyperparathyroidism and a multinodular goiter demonstrating the typical

ng (A) shows a low attenuation, ovoid lesion lateral to the left lobe of the

rated washout of contrast on delayed phase imaging (C).
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persistent hyperparathyroidism undergoing reoperation, MRI
correctly identified 74% of abnormal parathyroid glands,
with a comparable detection rate for adenomas and hyper-
plastic glands [54].

Parathryoid adenomas typically appear hypointense on
T1-weighted sequences, enhance avidly postcontrast, and
appear hyperintense on T2-weighted images, particularly
following fat suppression; however, their imaging features
can demonstrate considerable variability [55].

Recently, some investigators have sought to improve on
traditional static MRI by exploring dynamic MRI [53]. This
novel technique is similar in to dynamic CT in that it takes
advantage of the hypervascular nature of parathyroid ade-
nomas. However, whereas dynamic CT can only provide
snapshots at 2 or 3 time points (depending on the number of
acquisitions) MRI is not restricted by radiation dose and
could therefore acquire images at several time points. In 1
small pilot study of 30 patients, dynamic MRI distinguished
parathyroid adenomas from thyroid tissue and lymph nodes
with an accuracy of 96% [56].
Figure 5. 11Cmethionine positron emission tomography/computed tomography in a pa

(A, D), fused (B, E), and positron emission tomography (C, F) images show a focus o
PET/CT

PET/CT is not widely used in primary hyperparathyroidism
and is largely of academic interest at present. Nonetheless, its
potential advantages make it an attractive option in the
localization of parathyroid adenomas. It has greater spatial
resolution than SPECT/CT as well as a shorter image acqui-
sition time. However its high cost and limited availability have
made data on its use in parathyroid imaging scarce. One study
from 1996 found [18F] 2 fluorodeoxyglucose (FDG) PET to
be highly sensitive and adequately specific and even suggested
that it may even be preferred to 99mTc MIBI SPECT [57].
These findings however have not been widely repeated and the
results up until recently were largely disappointing.

The last few years have seen the development of a number
of novel PET radiotracers such as 18F fluorocholine and 11C
methionine (Figure 5). 18F fluorocholine appears to be the most
promising, as it is already in regular use in prostate and he-
patocellular carcinoma and is thus more easily accessible than
some other radiotracers. Two pilot studies suggested that it
tientwith a solitary parathyroid adenoma.Coronal and axial computed tomography

f intense uptake posterior to the upper pole of the left lobe of thyroid.
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could detect adenomatous or hyperplastic glands with good
accuracy and that its diagnostic performance may even be su-
perior to that of SPECT/CT [58,59]. A further study comparing
18F fluorocholine PET/CT with US and planar MIBI in 17
patients with primary or secondary hyperparathyroidism found
that PET/CT was more sensitive than US and was at least as
sensitive as planar MIBI with a similar specificity [60].

18F fluorocholine PET/CT is a promising new technique
in preoperative parathyroid imaging. Larger studies will
be necessary to confirm the above findings and clarify its
role, but it is likely to be of greatest value in cases with
discordant first-line imaging or in those with recurrent or
persistent disease.
Selective Venous Sampling
Despite the numerous modalities and techniques at our
disposal, a small subset of patients continues to have nega-
tive or inconclusive noninvasive investigations and may
benefit from selective venous sampling. Selective venous
sampling was first described in 1969 and has been in regular
use since the mid 1990s [61]. More recently, the develop-
ment of a rapid parathyroid hormone assay and its use in the
interventional radiology suite have provided near real time
data sampling, guiding the operator into smaller venous
branches in an effort to more precisely localize the abnormal
gland. This modified technique, also known as super selec-
tive venous sampling, accurately localized the affected gland
in 90% (28 of 31) of cases with negative noninvasive im-
aging in 1 recent series [62]. However, the authors did not
specify whether the patients had undergone SPECT/CT or
just planar scintigraphy. Thus, the reported data may not
accurately reflect current practice.

Cost Effectiveness

Several authors have attempted to compare the economic
costs associated with various strategies; however, many of
the calculations rely on data acquired prior to the widespread
use of SPECT/CT. Hence, the available comparisons are
more applicable to environments in which SPECT/CT is not
routinely used.

Lubitz et al [63] calculated that US alone followed by
dynamic CT in inconclusive cases was the most cost-
effective strategy. The savings associated with this
approach were largely due to the higher sensitivity of dy-
namic CT enabling more patients to undergo minimally-
invasive parathyroidectomy. However, this analysis assumed
a sensitivity of 78.9% for MIBI, a figure derived in part from
studies of planar scintigraphy. This value is somewhat lower
than has been reported for SPECT and SPECT/CT. More-
over, their costing analysis is based on data from Medicare
national reimbursement and thus may be of limited relevance
outside the United States.

Wang et al [64] also examined the cost of various imaging
algorithms and concluded that the most cost effective model
was SPECT and US together, followed by dynamic CT if the
2 initial studies were discordant. However, Lubitz et al’s [63]
suggestion of US followed by dynamic CT was not consid-
ered in Wang et al’s analysis. In contrast, Solorzano and
Carneiro-Pla [65] suggested 2 potential strategies: 1) US
followed by dynamic CT; or 2) US followed by MIBI with or
without dynamic CT.

An Optimal Imaging Strategy?

Any recommendations regarding an imaging protocol will
be limited by the inherent limitations of the available data.
First, over the last 30 years there has been a significant change
in the profile of the patients being referred for para-
thyroidectomy. The introduction of automated serum calcium
measurements in the 1970s, the development of national
osteoporotic screening guidelines, increased disease aware-
ness, as well as a reduction in surgical morbidity have all
served to lower the threshold for surgery [66]. One series from
a tertiary referral endocrine surgical unit, for example, reported
that there had been a reduction in preoperative serum calcium
from 342 pg/ml during 1983-1992 to 155 pg/ml during 1993-
2002. A reduction in mean adenoma size from 2.04 g to 1.33 g
was also observed during the same period [67]. These
changing referral practices call into question the relevancy of
many of the older series, whose patient populations are likely
to be very different from the patients referred today.

Second, many of the published series are retrospective
reviews and were not designed to make a direct comparison
between one modality and another. Thirdly, patients with
negative or equivocal first-line imaging are more likely to
progress to second-line imaging, leading to a selection bias
favoring patients with smaller adenomas or mulitgland dis-
ease. Last, several of the described techniques were per-
formed at high-volume centres by skilled operators and
experienced interpreters. Hence, not all results will be easily
applicable to all institutions.

Nonetheless, due to its high sensitivity and specificity, as
well as its ability to provide excellent anatomic detail for
surgical planning, SPECT/CT appears to be the most suitable
initial investigation. Dynamic CT has similar advantages and
may be reasonably employed as a first-line study, however its
higher radiation dose means that SPECT/CT should be
preferred, particularly in younger patients [44,46]. Although
some practitioners maintain that US is sufficient, both
SPECT/CT and dynamic CT have a higher sensitivity thereby
allowing more patients to undergo minimally-invasive para-
thyroidectomy. Hence, the role of US would now seem
limited to jurisdictions in which SPECT/CT or dynamic CT
are unavailable, or to those patients in whom radiation dose
is of particular concern.

Although initial results are encouraging, there is currently
insufficient evidence to recommend the routine use MRI or
PET/CT. However, they offer viable alternatives in cases
with negative or discordant imaging, particularly in those
being considered for reoperation. Selective venous sampling
can be considered in patients undergoing reoperation and
have had negative imaging at a high volume centre.
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However, due to the risk of complications it can only be
recommended when all noninvasive options have been
exhausted.

We now have a wide array of highly sensitive imaging
modalities at our disposal. Further studies should aim to
evaluate the diagnostic performance of the various modalities
in specific patient groups (ie, those with inconclusive first-
line imaging and those undergoing reoperation), while tak-
ing note of the cost, convenience, and radiation dose.

Conclusion

The advent of targeted parathyroidectomy has led to greater
demand for highly sensitive and increasingly accurate preop-
erative imaging. Preferred imaging strategies vary greatly from
1 institution to the next and it remains unclear which in-
vestigations should be performed alone, in combination, or in
succession. 99mTc MIBI SPECT/CT would appear to be the
most appropriate initial investigation with dynamic CToffering
a reasonable alternative. Currently, MRI and PET/CT are not
widely used but recent advances in parathyroid MRI and the
development of several novel PET/CT radiotracers may lead to
an expanded role for these modalities in the future.
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